Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs

نویسندگان

  • Ahmad Abdelfattah
  • Hatem Ltaief
  • David E. Keyes
  • Jack J. Dongarra
چکیده

Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic performance studies on graphics processing units

We report on our experience with integrating and using graphics processing units (GPUs) as fast parallel floatingpoint co-processors to accelerate two fundamental computational scientific kernels on the GPU: sparse direct factorization and nonlinear interior-point optimization. Since a full re-implementation of these complex kernels is typically not feasible, we identify the matrix-matrix multi...

متن کامل

General-Purpose Sparse Matrix Building Blocks using the NVIDIA CUDA Technology Platform

We report on our experience with integrating and using graphics processing units (GPUs) as fast parallel floatingpoint co-processors to accelerate two fundamental computational scientific kernels on the GPU: sparse direct factorization and nonlinear interior-point optimization. Since a full re-implementation of these complex kernels is typically not feasible, we identify e.g. the matrix-matrix ...

متن کامل

High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications

Leveraging optimization techniques (e.g., register blocking and double buffering) introduced in the context of KBLAS, a Level 2 BLAS high performance library on GPUs, the authors implement dense matrix-vector multiplications within a sparse-block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse ...

متن کامل

Implementing Sparse Matrix-Vector Multiplication with QCSR on GPU

We are going through the computation from single core to multicore architecture in parallel programming. Graphics Processor Units (GPUs) have recently emerged as outstanding platforms for data parallel applications with regular data access patterns. However, it is still challenging to optimize computations with irregular data access patterns like sparse matrix-vector multiplication (SPMV). SPMV...

متن کامل

Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)

Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Concurrency and Computation: Practice and Experience

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2016